T–50 B (Ag) Structure: A_tP50_134_b2m2n

Picture of Structure; Click for Big Picture
Prototype : B
AFLOW prototype label : A_tP50_134_b2m2n
Strukturbericht designation : $A_{g}$
Pearson symbol : tP50
Space group number : 134
Space group symbol : $\mbox{P4}_{2}\mbox{/nnm}$
AFLOW prototype command : aflow --proto=A_tP50_134_b2m2n
--params=
$a,c/a,x_{2},z_{2},x_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$


  • This is apparently the most common form of boron. At least, it's listed first in (Donohue, 1982). Note that the basic building block is a slightly distorted icosahedron. This icosahedron also appears in $\alpha$–B (R12) and $\beta$–B (R105).

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =&\frac34 \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& =&\frac34 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(2b\right) & \mbox{B I} \\ \mathbf{B}_{2} & =&\frac14 \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& =&\frac14 \, a \, \mathbf{\hat{x}}+ \frac34 \, a \, \mathbf{\hat{y}}+ \frac34 \, c \, \mathbf{\hat{z}}& \left(2b\right) & \mbox{B I} \\ \mathbf{B}_{3} & =&x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ z_{2} \, \mathbf{a}_{3}& =&x_{2} \, a \, \mathbf{\hat{x}}- x_{2} \, a \, \mathbf{\hat{y}}+ z_{2} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{4} & =&\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ z_{2} \, \mathbf{a}_{3}& =&\left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{y}}+ z_{2} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{5} & =&\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{x}}+ x_{2} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{6} & =&- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& =&- x_{2} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{7} & =&\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac12 - z_{2}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{x}}- x_{2} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{8} & =&x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{2}\right) \, \mathbf{a}_{3}& =&x_{2} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{9} & =&- x_{2} \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}& =&- x_{2} \, a \, \mathbf{\hat{x}}+ x_{2} \, a \, \mathbf{\hat{y}}- z_{2} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{10} & =&\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}& =&\left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{y}}- z_{2} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B II} \\ \mathbf{B}_{11} & =&x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+ z_{3} \, \mathbf{a}_{3}& =&x_{3} \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}+ z_{3} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{12} & =&\left(\frac12 - x_{3}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{3}\right) \, \mathbf{a}_{2}+ z_{3} \, \mathbf{a}_{3}& =&\left(\frac12 - x_{3}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{3}\right) \, a \, \mathbf{\hat{y}}+ z_{3} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{13} & =&\left(\frac12 + x_{3}\right) \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}+ \left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{3}\right) \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{14} & =&- x_{3} \, \mathbf{a}_{1}+ \left(\frac12 - x_{3}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& =&- x_{3} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{3}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{15} & =&\left(\frac12 - x_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+ \left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{3}\right) \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{16} & =&x_{3} \, \mathbf{a}_{1}+ \left(\frac12 + x_{3}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& =&x_{3} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{3}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{17} & =&- x_{3} \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}& =&- x_{3} \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}- z_{3} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{18} & =&\left(\frac12 + x_{3}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}& =&\left(\frac12 + x_{3}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{3}\right) \, a \, \mathbf{\hat{y}}- z_{3} \, c \, \mathbf{\hat{z}}& \left(8m\right) & \mbox{B III} \\ \mathbf{B}_{19} & =&x_{4} \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& =&x_{4} \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{20} & =&\left(\frac12 - x_{4}\right) \, \mathbf{a}_{1}+ \left(\frac12 - y_{4}\right) \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& =&\left(\frac12 - x_{4}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{4}\right) \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{21} & =&\left(\frac12 - y_{4}\right) \, \mathbf{a}_{1}+ x_{4} \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - y_{4}\right) \, a \, \mathbf{\hat{x}}+ x_{4} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{22} & =&y_{4} \, \mathbf{a}_{1}+ \left(\frac12 - x_{4}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& =&y_{4} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{4}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{23} & =&\left(\frac12 - x_{4}\right) \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{4}\right) \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{24} & =&x_{4} \, \mathbf{a}_{1}+ \left(\frac12 - y_{4}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& =&x_{4} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{4}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{25} & =&y_{4} \, \mathbf{a}_{1}+ x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& =&y_{4} \, a \, \mathbf{\hat{x}}+ x_{4} \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{26} & =&\left(\frac12 - y_{4}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& =&\left(\frac12 - y_{4}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{4}\right) \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{27} & =&- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& =&- x_{4} \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{28} & =&\left(\frac12 + x_{4}\right) \, \mathbf{a}_{1}+ \left(\frac12 + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& =&\left(\frac12 + x_{4}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{4}\right) \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{29} & =&\left(\frac12 + y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + y_{4}\right) \, a \, \mathbf{\hat{x}}- x_{4} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{30} & =&- y_{4} \, \mathbf{a}_{1}+ \left(\frac12 + x_{4}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& =&- y_{4} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{4}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{31} & =&\left(\frac12 + x_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{4}\right) \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{32} & =&- x_{4} \, \mathbf{a}_{1}+ \left(\frac12 + y_{4}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& =&- x_{4} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{4}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{33} & =&- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& =&- y_{4} \, a \, \mathbf{\hat{x}}- x_{4} \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{34} & =&\left(\frac12 + y_{4}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{4}\right) \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& =&\left(\frac12 + y_{4}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{4}\right) \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B IV} \\ \mathbf{B}_{35} & =&x_{5} \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}+ z_{5} \, \mathbf{a}_{3}& =&x_{5} \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}+ z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{36} & =&\left(\frac12 - x_{5}\right) \, \mathbf{a}_{1}+ \left(\frac12 - y_{5}\right) \, \mathbf{a}_{2}+ z_{5} \, \mathbf{a}_{3}& =&\left(\frac12 - x_{5}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{5}\right) \, a \, \mathbf{\hat{y}}+ z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{37} & =&\left(\frac12 - y_{5}\right) \, \mathbf{a}_{1}+ x_{5} \, \mathbf{a}_{2}+ \left(\frac12 + z_{5}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - y_{5}\right) \, a \, \mathbf{\hat{x}}+ x_{5} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{38} & =&y_{5} \, \mathbf{a}_{1}+ \left(\frac12 - x_{5}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{5}\right) \, \mathbf{a}_{3}& =&y_{5} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{5}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{39} & =&\left(\frac12 - x_{5}\right) \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}+ \left(\frac12 - z_{5}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{5}\right) \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{40} & =&x_{5} \, \mathbf{a}_{1}+ \left(\frac12 - y_{5}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{5}\right) \, \mathbf{a}_{3}& =&x_{5} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{5}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{41} & =&y_{5} \, \mathbf{a}_{1}+ x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}& =&y_{5} \, a \, \mathbf{\hat{x}}+ x_{5} \, a \, \mathbf{\hat{y}}- z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{42} & =&\left(\frac12 - y_{5}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}& =&\left(\frac12 - y_{5}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{5}\right) \, a \, \mathbf{\hat{y}}- z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{43} & =&- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}& =&- x_{5} \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}- z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{44} & =&\left(\frac12 + x_{5}\right) \, \mathbf{a}_{1}+ \left(\frac12 + y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}& =&\left(\frac12 + x_{5}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{5}\right) \, a \, \mathbf{\hat{y}}- z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{45} & =&\left(\frac12 + y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+ \left(\frac12 - z_{5}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + y_{5}\right) \, a \, \mathbf{\hat{x}}- x_{5} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{46} & =&- y_{5} \, \mathbf{a}_{1}+ \left(\frac12 + x_{5}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{5}\right) \, \mathbf{a}_{3}& =&- y_{5} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{5}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{47} & =&\left(\frac12 + x_{5}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+ \left(\frac12 + z_{5}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{5}\right) \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{48} & =&- x_{5} \, \mathbf{a}_{1}+ \left(\frac12 + y_{5}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{5}\right) \, \mathbf{a}_{3}& =&- x_{5} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{5}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{5}\right) \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{49} & =&- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+ z_{5} \, \mathbf{a}_{3}& =&- y_{5} \, a \, \mathbf{\hat{x}}- x_{5} \, a \, \mathbf{\hat{y}}+ z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \mathbf{B}_{50} & =&\left(\frac12 + y_{5}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{5}\right) \, \mathbf{a}_{2}+ z_{5} \, \mathbf{a}_{3}& =&\left(\frac12 + y_{5}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{5}\right) \, a \, \mathbf{\hat{y}}+ z_{5} \, c \, \mathbf{\hat{z}}& \left(16n\right) & \mbox{B V} \\ \end{array} \]

References

  • J. L. Hoard, R. E. Hughes, and D. E. Sands, The Structure of Tetragonal Boron, J. Am. Chem. Soc. 80, 4507–4515 (1958), doi:10.1021/ja01550a019.

Found in

  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982)., pp. 48-56.

Geometry files


Prototype Generator

aflow --proto=A_tP50_134_b2m2n --params=

Species:

Running:

Output: