The Tetragonal Crystal System
In the tetragonal system, like the orthorhombic system, the conventional
unit cell is a parallelepiped, but two sides are equal, so that $a =
b$ and $c \ne a$, while $\alpha = \beta = \gamma = \pi/2$, and this
is a special case of the orthorhombic system. The primitive vectors
of the conventional unit cell are
\begin{eqnarray}
\mathbf{A}_1 & = & a \, \mathbf{\hat{x}} \nonumber \\
\mathbf{A}_2 & = & a \, \mathbf{\hat{y}} \nonumber \\
\mathbf{A}_3 & = & c \, \mathbf{\hat{z}}.
\end{eqnarray}
The volume of the conventional unit cell is
\begin{equation}
V = a^2 \, c .
\end{equation}
Given the similarity between the tetragonal and orthorhombic crystal
system, we might expect that the tetragonal system would have four
Bravais lattices as well, but the additional symmetry generated
because $b = a$ reduces this to two. When $b \rightarrow a$, the
base-centered orthorhombic
Bravais lattice becomes a simple tetragonal lattice, while the
face-centered orthorhombic lattice
can be shown to be identical to a body-centered tetragonal cell
(see pgs. 115-117 of N. W. Ashcroft and N. D. Mermin,
Solid State Physics).
The simple tetragonal Bravais lattice is identical to the
conventional cell
\begin{eqnarray}
\mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \nonumber \\
\mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \nonumber \\
\mathbf{a}_3 & = & c \, \mathbf{\hat{z}},
\end{eqnarray}
with volume
\begin{equation}
V = a^2 \, c .
\end{equation}
The space groups associated with the simple tetragonal lattice are
\begin{array}{lll}
75. ~ \mbox{P4} & 76. ~ \mbox{P4$_{1}$} & 77. ~ \mbox{P4$_{2}$} \\
78. ~ \mbox{P4$_{3}$} & 81. ~ \mbox{P$\overline{4}$} & 83. ~ \mbox{P4/m} \\
84. ~ \mbox{P4$_{2}$/m} & 85. ~ \mbox{P4/n} & 86. ~ \mbox{P4$_{2}$/n} \\
89. ~ \mbox{P422} & 90. ~ \mbox{P42$_{1}$2} & 91. ~ \mbox{P4$_{1}$22} \\
92. ~ \mbox{P4$_{1}$2$_{1}$2} & 93. ~ \mbox{P4$_{2}$22} & 94. ~ \mbox{P4$_{2}$2$_{1}$2} \\
95. ~ \mbox{P4$_{3}$22} & 96. ~ \mbox{P4$_{3}$2$_{1}$2} & 99. ~ \mbox{P4mm} \\
100. ~ \mbox{P4bm} & 101. ~ \mbox{P4$_{2}$cm} & 102. ~ \mbox{P4$_{2}$nm} \\
103. ~ \mbox{P4cc} & 104. ~ \mbox{P4nc} & 105. ~ \mbox{P4$_{2}$mc} \\
106. ~ \mbox{P4$_{2}$bc} & 111. ~ \mbox{P$\overline{4}$2m} & 112. ~ \mbox{P$\overline{4}$2c} \\
113. ~ \mbox{P$\overline{4}$2$_{1}$m} & 114. ~ \mbox{P$\overline{4}$2$_{1}$c} & 115. ~ \mbox{P$\overline{4}$m2} \\
116. ~ \mbox{P$\overline{4}$c2} & 117. ~ \mbox{P$\overline{4}$b2} & 118. ~ \mbox{P$\overline{4}$n2} \\
123. ~ \mbox{P4/mmm} & 124. ~ \mbox{P4/mcc} & 125. ~ \mbox{P4/nbm} \\
126. ~ \mbox{P4/nnc} & 127. ~ \mbox{P4/mbm} & 128. ~ \mbox{P4/mnc} \\
129. ~ \mbox{P4/nmm} & 130. ~ \mbox{P4/ncc} & 131. ~ \mbox{P4$_{2}$/mmc} \\
132. ~ \mbox{P4$_{2}$/mcm} & 133. ~ \mbox{P4$_{2}$/nbc} & 134. ~ \mbox{P4$_{2}$/nnm} \\
135. ~ \mbox{P4$_{2}$/mbc} & 136. ~ \mbox{P4$_{2}$/mnm} & 137. ~ \mbox{P4$_{2}$/nmc} \\
138. ~ \mbox{P4$_{2}$/ncm} & ~ & ~ \\
\end{array}
The body-centered tetragonal system has the same point group and
translational symmetry as the simple tetragonal system, with the
addition of a translation to the center of the parallelepiped.
Our standard form of the primitive vectors is
\begin{eqnarray}
\mathbf{a}_1 & = & - \frac{a}{2} \, \mathbf{\hat{x}} + \frac{a}{2} \, \mathbf{\hat{y}}
+ \frac{c}{2} \, \mathbf{\hat{z}} \nonumber \\
\mathbf{a}_2 & = & ~ \frac{a}{2} \, \mathbf{\hat{x}} - \frac{a}{2} \, \mathbf{\hat{y}}
+ \frac{c}{2} \, \mathbf{\hat{z}} \nonumber \\
\mathbf{a}_3 & = & ~ \frac{a}{2} \, \mathbf{\hat{x}} + \frac{a}{2} \, \mathbf{\hat{y}}
- \frac{c}{2} \, \mathbf{\hat{z}}.
\end{eqnarray}
The volume of the primitive body-centered tetragonal unit cell is
\begin{equation}
V = \frac{a^2 \, c}{2}.
\end{equation}
There are two primitive body-centered tetragonal unit cells in the
conventional tetragonal unit cell.
The space groups associated
with this lattice, all of which begin with $\mbox{I}$ in the standard notation,
are
\begin{array}{lll}
79. ~ \mbox{I4} & 80. ~ \mbox{I4$_{1}$} & 82. ~ \mbox{I$\overline{4}$} \\
87. ~ \mbox{I4/m} & 88. ~ \mbox{I4$_{1}$/a} & 97. ~ \mbox{I422} \\
98. ~ \mbox{I4$_{1}$22} & 107. ~ \mbox{I4mm} & 108. ~ \mbox{I4cm} \\
109. ~ \mbox{I4$_{1}$md} & 110. ~ \mbox{I4$_{1}$cd} & 119. ~ \mbox{I$\overline{4}$m2} \\
120. ~ \mbox{I$\overline{4}$c2} & 121. ~ \mbox{I$\overline{4}$2m} & 122. ~ \mbox{I$\overline{4}$2d} \\
139. ~ \mbox{I4/mmm} & 140. ~ \mbox{I4/mcm} & 141. ~ \mbox{I4$_{1}$/amd} \\
142. ~ \mbox{I4$_{1}$/acd} & ~ & \\
\end{array}