
Prototype | : | HoCuP2 |
AFLOW prototype label | : | ABC2_oC16_67_b_g_ag |
Strukturbericht designation | : | None |
Pearson symbol | : | oC16 |
Space group number | : | 67 |
Space group symbol | : | $Cmma$ |
AFLOW prototype command | : | aflow --proto=ABC2_oC16_67_b_g_ag --params=$a,b/a,c/a,z_{3},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu} \\ \mathbf{B}_{5} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ho} \\ \mathbf{B}_{6} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ho} \\ \mathbf{B}_{7} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{P II} \\ \mathbf{B}_{8} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{P II} \\ \end{array} \]