
Prototype | : | FeS2 |
AFLOW prototype label | : | AB2_cP12_205_a_c |
Strukturbericht designation | : | $C2$ |
Pearson symbol | : | cP12 |
Space group number | : | 205 |
Space group symbol | : | $\mbox{Pa}\bar{3}$ |
AFLOW prototype command | : | aflow --proto=AB2_cP12_205_a_c --params=$a,x_{2}$ |
weakly anisotropic pyritewhich we have tabulated as P1 FeS2. He also gives crystallographic data for the cubic pyrite structure, which we report here. Also see the C18 (marcasite) FeS2 structure.
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = &0 \mathbf{\mathbf{\hat{x}}} + 0 \mathbf{\mathbf{\hat{y}}} + 0 \mathbf{\mathbf{\hat{z}}} & \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{x}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{z}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = &\frac12 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{y}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{z}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{x}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{y}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = &x_{2} \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{6} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{7} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{8} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &\left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{9} & = &- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{10} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{11} & = &x_{2} \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{12} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &\left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \end{array} \]