Spinel (Co3O4, $D7_{2}$) Structure: A3B4_cF56_227_ad_e

Picture of Structure; Click for Big Picture
Prototype : Co3O4
AFLOW prototype label : A3B4_cF56_227_ad_e
Strukturbericht designation : $D7_{2}$
Pearson symbol : cF56
Space group number : 227
Space group symbol : $Fd\bar{3}m$
AFLOW prototype command : aflow --proto=A3B4_cF56_227_ad_e
--params=
$a,x_{3}$


Other compounds with this structure:

  • NiCo2O4, Co3S4, NiCo2S4, FeNi2S4

  • The $D7_{2}$ and $H1_{1}$ Spinel structures are for all intents and purposes identical. We could use $D7_{3}$ for the binary spinels and $H1_{1}$ for the ternaries, but historically this has not been the case. We dual-list this structure only to keep the historical record intact. (Hahn, 1955) has an extensive list of ternary spinels and inverse spinels.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{Co I} \\ \mathbf{B}_{2} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{7}{8}a \, \mathbf{\hat{x}} + \frac{7}{8}a \, \mathbf{\hat{y}} + \frac{7}{8}a \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{Co I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co II} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co II} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{12} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{O} \\ \end{array} \]

References

  • O. Knop, K. I. G. Reid, Sutarno, and Y. Nakagawa, Chalkogenides of the transition elements. VI. X–Ray, neutron, and magnetic investigation of the spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4, Can. J. Chem. 46, 3463–3476 (1968), doi:10.1139/v68-576.
  • H. Hahn, G. Frank, W. Klingler, A. D. Störger, and G. Störger, Untersuchungen über Ternäre Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber, Z. Anorg. Allg. Chem. 279, 241–270 (1955), doi:10.1002/zaac.19552790502.

Geometry files


Prototype Generator

aflow --proto=A3B4_cF56_227_ad_e --params=

Species:

Running:

Output: