
Prototype | : | C |
AFLOW prototype label | : | A_mP8_10_2m2n |
Strukturbericht designation | : | None |
Pearson symbol | : | mP8 |
Space group number | : | 10 |
Space group symbol | : | $P2/m$ |
AFLOW prototype command | : | aflow --proto=A_mP8_10_2m2n --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4}$ |
superhardallotrope of carbon. Shortly after this paper was published, two other papers predicted similar structures, differentiated mainly by an origin shift:
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{C I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{C I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{C II} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{C II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{C III} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{C III} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{C IV} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{C IV} \\ \end{array} \]