
Prototype | : | S |
AFLOW prototype label | : | A_hP9_154_bc |
Strukturbericht designation | : | None |
Pearson symbol | : | hP9 |
Space group number | : | 154 |
Space group symbol | : | $P3_{2}21$ |
AFLOW prototype command | : | aflow --proto=A_hP9_154_bc --params=$a,c/a,x_{1},x_{2},y_{2},z_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{6} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{1}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \frac{1}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{S I} \\ \mathbf{B}_{2} & = & x_{1} \, \mathbf{a}_{2} + \frac{5}{6} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{1}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \frac{5}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{S I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{S I} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{2}+y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{2}+y_{2}\right)a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \mathbf{B}_{5} & = & -y_{2} \, \mathbf{a}_{1} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{2}-y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \mathbf{B}_{6} & = & \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(-x_{2}+\frac{1}{2}y_{2}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \mathbf{B}_{7} & = & y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{2}+y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{2}-y_{2}\right)a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \mathbf{B}_{8} & = & \left(x_{2}-y_{2}\right) \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{3} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{2}-y_{2}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \mathbf{B}_{9} & = & -x_{2} \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(-x_{2}+\frac{1}{2}y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{2}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{S II} \\ \end{array} \]