
Prototype | : | $\gamma$–Se |
AFLOW prototype label | : | A_hP3_152_a |
Strukturbericht designation | : | $A8$ |
Pearson symbol | : | hP3 |
Space group number | : | 152 |
Space group symbol | : | $\mbox{P3}_{1}\mbox{21}$ |
AFLOW prototype command | : | aflow --proto=A_hP3_152_a --params=$a,c/a,x_{1}$ |
monoclinic $\alpha$and
monoclinic $\beta$,respectively. When $x = 1/3$ this reduces to the Ai ($\beta$–Po) or A10 ($\alpha$–Hg) structure. If, in addition, $c = \sqrt6 a$, then the structure becomes fcc (A1). On the other hand, if $c = \sqrt{3/2} a$, then the structure becomes simple cubic (Ah).
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =& x_{1} \, \mathbf{a}_{1} + \frac13 \, \mathbf{a}_{3}& =& \frac12 \, x_{1} \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, x_{1} \, a \, \mathbf{\hat{y}} +\frac13 \, c \, \mathbf{\hat{z}}& \left(3a\right) & \mbox{Se} \\ \mathbf{B}_{2} & =& x_{1} \, \mathbf{a}_{2} + \frac23 \, \mathbf{a}_{3}& =& \frac12 \, x_{1} \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, x_{1} \, a \, \mathbf{\hat{y}} +\frac23 \, c \, \mathbf{\hat{z}}& \left(3a\right) & \mbox{Se} \\ \mathbf{B}_{3} & =& - x_{1} \, \mathbf{a}_{1} - x_{1} \, \mathbf{a}_{2}& =& - x_{1} \, a \, \mathbf{\hat{x}}& \left(3a\right) & \mbox{Se} \\ \end{array} \]