VN (Low–temperature) Structure: AB_tP8_111_n_n

Picture of Structure; Click for Big Picture
Prototype : VN
AFLOW prototype label : AB_tP8_111_n_n
Strukturbericht designation : None
Pearson symbol : tP8
Space group number : 111
Space group symbol : $P\bar{4}2m$
AFLOW prototype command : aflow --proto=AB_tP8_111_n_n
--params=
$a,c/a,x_{1},z_{1},x_{2},z_{2}$


  • FINDSYM identifies space group #111 for this structure (consistent with the reference); however, since $c/a \approx 1$, AFLOW–SYM and Platon identify #215. Lowering the tolerance value for AFLOW–SYM resolves the expected space group #111. Space groups #111 and #215 are both reasonable classifications since they are commensurate with subgroup relations.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{N} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{N} \\ \mathbf{B}_{3} & = & x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{N} \\ \mathbf{B}_{4} & = & -x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{N} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{V} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{V} \\ \mathbf{B}_{7} & = & x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{V} \\ \mathbf{B}_{8} & = & -x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4n\right) & \mbox{V} \\ \end{array} \]

References

  • F. Kubel, W. Lengauer, K. Yvon, K. Knorr, and A. Junod, Structural phase transition at 205 K in stoichiometric vanadium nitride, Phys. Rev. B 38, 12908 (1988), doi:10.1103/PhysRevB.38.12908.
  • H. T. Stokes and D. M. Hatch, FINDSYM: Program for identifying the space group symmetry of a crystal, J. Appl. Crystallogr. 38, 237–238 (2005), doi:10.1107/S0021889804031528.
  • D. Hicks, C. Oses, E. Gossett, G. Gomez, R. H. Taylor, C. Toher, M. J. Mehl, O. Levy, and S. Curtarolo, it AFLOW–SYM: platform for the complete, automatic and self–consistent symmetry analysis of crystals, Acta Crystallogr. Sect. A 74, 184–203 (2018), doi:10.1107/S2053273318003066.
  • A. L. Spek, Single–crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36, 7–13 (2003), doi:10.1107/S0021889802022112.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB_tP8_111_n_n --params=

Species:

Running:

Output: