
Prototype | : | CoAs |
AFLOW prototype label | : | AB_oP8_33_a_a |
Strukturbericht designation | : | None |
Pearson symbol | : | oP8 |
Space group number | : | 33 |
Space group symbol | : | $\mbox{Pna2}_{1}$ |
AFLOW prototype command | : | aflow --proto=AB_oP8_33_a_a --params=$a,b/a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =& x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3}& =& x_{1} \, a \, \mathbf{\hat{x}} + y_{1} \, b \, \mathbf{\hat{y}} + z_{1} \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{As} \\ \mathbf{B}_{2} & =& - x_{1} \, \mathbf{a}_{1} - y_{1} \, \mathbf{a}_{2} + \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& =& - x_{1} \, a \, \mathbf{\hat{x}} - y_{1} \, b \, \mathbf{\hat{y}} + \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{As} \\ \mathbf{B}_{3} & =& \left(\frac12 + x_{1}\right) \, \mathbf{a}_{1} + \left(\frac12 - y_{1}\right) \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3}& =& \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}} + \left(\frac12 - y_{1}\right) \, b \, \mathbf{\hat{y}} + z_{1} \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{As} \\ \mathbf{B}_{4} & =& \left(\frac12 - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac12 + y_{1}\right) \, \mathbf{a}_{2} + \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& =& \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}} + \left(\frac12 + y_{1}\right) \, b \, \mathbf{\hat{y}} + \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{As} \\ \mathbf{B}_{5} & =& x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3}& =& x_{2} \, a \, \mathbf{\hat{x}} + y_{2} \, b \, \mathbf{\hat{y}} + z_{2} \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{Co} \\ \mathbf{B}_{6} & =& - x_{2} \, \mathbf{a}_{1} - y_{2} \, \mathbf{a}_{2} + \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& =& - x_{2} \, a \, \mathbf{\hat{x}} - y_{2} \, b \, \mathbf{\hat{y}} + \left(\frac12 + z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{Co} \\ \mathbf{B}_{7} & =& \left(\frac12 + x_{2}\right) \, \mathbf{a}_{1} + \left(\frac12 - y_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3}& =& \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{x}} + \left(\frac12 - y_{2}\right) \, b \, \mathbf{\hat{y}} + z_{2} \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{Co} \\ \mathbf{B}_{8} & =& \left(\frac12 - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac12 + y_{2}\right) \, \mathbf{a}_{2} + \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& =& \left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{x}} + \left(\frac12 + y_{2}\right) \, b \, \mathbf{\hat{y}} + \left(\frac12 + z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(4a\right) & \mbox{Co} \\ \end{array} \]