
Prototype | : | SiC |
AFLOW prototype label | : | AB_hR10_160_5a_5a |
Strukturbericht designation | : | $B7$ |
Pearson symbol | : | hR10 |
Space group number | : | 160 |
Space group symbol | : | $R3m$ |
AFLOW prototype command | : | aflow --proto=AB_hR10_160_5a_5a [--hex] --params=$a,c/a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10}$ |
Type I $\alpha$-silicon carbide.The atomic positions are not well determined. We follow (Thibault, 1944) and assume that the (0001) planes of carbon atoms are equally spaced, and that each carbon atom has a silicon atom at a distance of $c/20$ along the $\mathbf{\hat{z}}$ axis.
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C I} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C III} \\ \mathbf{B}_{4} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C IV} \\ \mathbf{B}_{5} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C V} \\ \mathbf{B}_{6} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Si I} \\ \mathbf{B}_{7} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & x_{7}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Si II} \\ \mathbf{B}_{8} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & x_{8}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Si III} \\ \mathbf{B}_{9} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + x_{9} \, \mathbf{a}_{3} & = & x_{9}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Si IV} \\ \mathbf{B}_{10} & = & x_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + x_{10} \, \mathbf{a}_{3} & = & x_{10}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Si V} \\ \end{array} \]