
Prototype | : | CuS |
AFLOW prototype label | : | AB_hP12_194_df_ce |
Strukturbericht designation | : | $B18$ |
Pearson symbol | : | hP12 |
Space group number | : | 194 |
Space group symbol | : | $\mbox{P6}_{3}\mbox{/mmc}$ |
AFLOW prototype command | : | aflow --proto=AB_hP12_194_df_ce --params=$a,c/a,z_{3},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(2c\right) & \mbox{S I} \\ \mathbf{B}_{2}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac34 \, c \, \mathbf{\hat{z}}& \left(2c\right) & \mbox{S I} \\ \mathbf{B}_{3}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac34 \, c \, \mathbf{\hat{z}}& \left(2d\right) & \mbox{Cu I} \\ \mathbf{B}_{4}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(2d\right) & \mbox{Cu I} \\ \mathbf{B}_{5}& = &z_{3} \, \mathbf{a}_{3}& = &z_{3} \, c \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{S II} \\ \mathbf{B}_{6}& = &- z_{3} \, \mathbf{a}_{3}& = &- z_{3} \, c \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{S II} \\ \mathbf{B}_{7}& = &\left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{S II} \\ \mathbf{B}_{8}& = &\left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{S II} \\ \mathbf{B}_{9}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+\frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{Cu II} \\ \mathbf{B}_{10}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{Cu II} \\ \mathbf{B}_{11}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{Cu II} \\ \mathbf{B}_{12}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{Cu II} \\ \end{array} \]