
Prototype | : | FePSe3 |
AFLOW prototype label | : | ABC3_hR10_146_2a_2a_2b |
Strukturbericht designation | : | None |
Pearson symbol | : | hR10 |
Space group number | : | 146 |
Space group symbol | : | $R3$ |
AFLOW prototype command | : | aflow --proto=ABC3_hR10_146_2a_2a_2b [--hex] --params=$a,c/a,x_{1},x_{2},x_{3},x_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Fe I} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Fe II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{P I} \\ \mathbf{B}_{4} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{P II} \\ \mathbf{B}_{5} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}-z_{5}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{5}+\frac{1}{\sqrt{3}}y_{5}-\frac{1}{2\sqrt{3}}z_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{5}+y_{5}+z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se I} \\ \mathbf{B}_{6} & = & z_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + y_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{5}+z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{5}-\frac{1}{2\sqrt{3}}y_{5}-\frac{1}{2\sqrt{3}}z_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{5}+y_{5}+z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se I} \\ \mathbf{B}_{7} & = & y_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{5}-\frac{1}{2\sqrt{3}}y_{5}+\frac{1}{\sqrt{3}}z_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{5}+y_{5}+z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se I} \\ \mathbf{B}_{8} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}-z_{6}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{6}+\frac{1}{\sqrt{3}}y_{6}-\frac{1}{2\sqrt{3}}z_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{6}+y_{6}+z_{6}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se II} \\ \mathbf{B}_{9} & = & z_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + y_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{6}+z_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{6}-\frac{1}{2\sqrt{3}}y_{6}-\frac{1}{2\sqrt{3}}z_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{6}+y_{6}+z_{6}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se II} \\ \mathbf{B}_{10} & = & y_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{6}-\frac{1}{2\sqrt{3}}y_{6}+\frac{1}{\sqrt{3}}z_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{6}+y_{6}+z_{6}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Se II} \\ \end{array} \]