
Prototype | : | NaFeS2 |
AFLOW prototype label | : | ABC2_oI16_23_ab_i_k |
Strukturbericht designation | : | None |
Pearson symbol | : | oI16 |
Space group number | : | 23 |
Space group symbol | : | $I222$ |
AFLOW prototype command | : | aflow --proto=ABC2_oI16_23_ab_i_k --params=$a,b/a,c/a,z_{3},x_{4},y_{4},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Fe I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(2b\right) & \mbox{Fe II} \\ \mathbf{B}_{3} & = & z_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Na} \\ \mathbf{B}_{4} & = & -z_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Na} \\ \mathbf{B}_{5} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{6} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{7} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{8} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \end{array} \]