Ta2Se8I Structure: AB8C2_tI44_97_e_2k_cd

Picture of Structure; Click for Big Picture
Prototype : Ta2Se8I
AFLOW prototype label : AB8C2_tI44_97_e_2k_cd
Strukturbericht designation : None
Pearson symbol : tI44
Space group number : 97
Space group symbol : $I422$
AFLOW prototype command : aflow --proto=AB8C2_tI44_97_e_2k_cd
--params=
$a,c/a,z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$


Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{Ta I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4c\right) & \mbox{Ta I} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Ta II} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Ta II} \\ \mathbf{B}_{5} & = & z_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{I} \\ \mathbf{B}_{6} & = & -z_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{I} \\ \mathbf{B}_{7} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{8} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{9} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{10} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{11} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{12} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{13} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{14} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se I} \\ \mathbf{B}_{15} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{16} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{17} & = & \left(x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{18} & = & \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{19} & = & \left(y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{20} & = & \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{21} & = & \left(x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \mathbf{B}_{22} & = & \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Se II} \\ \end{array} \]

References

  • P. Gressier, A. Meerschaut, L. Guemas, J. Rouxel, and P. Monceau, Characterization of the new series of quasi one–dimensional compounds (MX4)nY (M = Nb, Ta; X = S, Se; Y = Br, I), J. Solid State Chem. 51, 141–151 (1984), doi:10.1016/0022-4596(84)90327-X.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB8C2_tI44_97_e_2k_cd --params=

Species:

Running:

Output: