
Prototype | : | NbTe4 |
AFLOW prototype label | : | AB4_tP10_124_a_m |
Strukturbericht designation | : | None |
Pearson symbol | : | tP10 |
Space group number | : | 124 |
Space group symbol | : | $P4/mcc$ |
AFLOW prototype command | : | aflow --proto=AB4_tP10_124_a_m --params=$a,c/a,x_{2},y_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Nb} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Nb} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{5} & = & -y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & -y_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{6} & = & y_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & y_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{9} & = & y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{Te} \\ \mathbf{B}_{10} & = & -y_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{Te} \\ \end{array} \]