
Prototype | : | PdSn4 |
AFLOW prototype label | : | AB4_oC20_68_a_i |
Strukturbericht designation | : | None |
Pearson symbol | : | oC20 |
Space group number | : | 68 |
Space group symbol | : | $Ccca$ |
AFLOW prototype command | : | aflow --proto=AB4_oC20_68_a_i --params=$a,b/a,c/a,x_{2},y_{2},z_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Pd} \\ \mathbf{B}_{2} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Pd} \\ \mathbf{B}_{3} & = & \left(x_{2}-y_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - x_{2} + y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2} - y_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{5} & = & \left(-x_{2}-y_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{2} + y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{7} & = & \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2} + y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{9} & = & \left(x_{2}+y_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{2} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2} + y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Sn} \\ \end{array} \]