$\beta$–V3S Structure: AB3_tP32_133_h_i2j

Picture of Structure; Click for Big Picture
Prototype : V3S
AFLOW prototype label : AB3_tP32_133_h_i2j
Strukturbericht designation : None
Pearson symbol : tP32
Space group number : 133
Space group symbol : $P4_{2}/nbc$
AFLOW prototype command : aflow --proto=AB3_tP32_133_h_i2j
--params=
$a,c/a,x_{1},x_{2},x_{3},x_{4}$



Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \left(\frac{1}{2} - x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{1}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{5} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{7} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{8} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{S} \\ \mathbf{B}_{9} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{11} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{12} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{13} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{15} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{16} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{V I} \\ \mathbf{B}_{17} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{20} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{21} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{24} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V II} \\ \mathbf{B}_{25} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{28} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{29} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \mathbf{B}_{32} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{V III} \\ \end{array} \]

References

  • B. Pedersen and F. Gronvold, The crystal structures of α–V3S and β–V3S, Acta Cryst. 12, 1022–1027 (1959), doi:10.1107/S0365110X59002869.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB3_tP32_133_h_i2j --params=

Species:

Running:

Output: