
Prototype | : | AlCl3 |
AFLOW prototype label | : | AB3_mC16_12_g_ij |
Strukturbericht designation | : | $D0_{15}$ |
Pearson symbol | : | mC16 |
Space group number | : | 12 |
Space group symbol | : | $\mbox{C2/m}$ |
AFLOW prototype command | : | aflow --proto=AB3_mC16_12_g_ij --params=$a,b/a,c/a,\beta,y_{1},x_{2},z_{2},x_{3},y_{3},z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =& - y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2}& =& y_{1} \, b \, \mathbf{\hat{y}}& \left(4g\right) & \mbox{Al} \\ \mathbf{B}_{2} & =& y_{1} \, \mathbf{a}_{1} - y_{1} \, \mathbf{a}_{2}& =& - y_{1} \, b \, \mathbf{\hat{y}}& \left(4g\right) & \mbox{Al} \\ \mathbf{B}_{3} & =& x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3}& =& \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4i\right) & \mbox{Cl I} \\ \mathbf{B}_{4} & =& - x_{2} \, \mathbf{a}_{1} - x_{2} \, \mathbf{a}_{2} - z_{2} \, \mathbf{a}_{3}& =& - \left(x_{2} \, a + z_2 \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- z_2 \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4i\right) & \mbox{Cl I} \\ \mathbf{B}_{5} & =& \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3}& =& \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{3} \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(8j\right) & \mbox{Cl II} \\ \mathbf{B}_{6} & =& -\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1} + \left(y_{3} - x_{3}\right) \, \mathbf{a}_{2} - z_{3} \, \mathbf{a}_{3}& =& - \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{3} \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(8j\right) & \mbox{Cl II} \\ \mathbf{B}_{7} & =& \left(y_{3} - x_{3}\right) \, \mathbf{a}_{1} - \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2} - z_{3} \, \mathbf{a}_{3}& =& - \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{3} \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(8j\right) & \mbox{Cl II} \\ \mathbf{B}_{8} & =& \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3}& =& \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{3} \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(8j\right) & \mbox{Cl II} \\ \end{array} \]