
Prototype | : | HgI2 |
AFLOW prototype label | : | AB2_tP12_115_j_egi |
Strukturbericht designation | : | None |
Pearson symbol | : | tP12 |
Space group number | : | 115 |
Space group symbol | : | $P\bar{4}m2$ |
AFLOW prototype command | : | aflow --proto=AB2_tP12_115_j_egi --params=$a,c/a,z_{1},z_{2},x_{3},x_{4},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{I I} \\ \mathbf{B}_{2} & = & -z_{1} \, \mathbf{a}_{3} & = & -z_{1}c \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{I I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2g\right) & \mbox{I II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{2}c \, \mathbf{\hat{z}} & \left(2g\right) & \mbox{I II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{11} & = & -x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \end{array} \]