Chalcostibite (CuSbS2, F56): AB2C_oP16_62_c_2c_c

Picture of Structure; Click for Big Picture
Prototype : CuSbS2
AFLOW prototype label : AB2C_oP16_62_c_2c_c
Strukturbericht designation : $F5_{6}$
Pearson symbol : oP16
Space group number : 62
Space group symbol : $\mbox{Pnma}$
AFLOW prototype command : aflow --proto=AB2C_oP16_62_c_2c_c
--params=
$a,b/a,c/a,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4}$


Other compounds with this structure

  • CuBiS2

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =&x_{1} \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& =&x_{1} \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{1} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Cu} \\ \mathbf{B}_{2} & =&\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Cu} \\ \mathbf{B}_{3} & =&- x_{1} \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& =&- x_{1} \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{1} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Cu} \\ \mathbf{B}_{4} & =&\left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Cu} \\ \mathbf{B}_{5} & =&x_{2} \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ z_{2} \, \mathbf{a}_{3}& =&x_{2} \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{2} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S I} \\ \mathbf{B}_{6} & =&\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S I} \\ \mathbf{B}_{7} & =&- x_{2} \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}& =&- x_{2} \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{2} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S I} \\ \mathbf{B}_{8} & =&\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \left(\frac12 - z_{2}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{2}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S I} \\ \mathbf{B}_{9} & =&x_{3} \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ z_{3} \, \mathbf{a}_{3}& =&x_{3} \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S II} \\ \mathbf{B}_{10} & =&\left(\frac12 - x_{3}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{3}\right) \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S II} \\ \mathbf{B}_{11} & =&- x_{3} \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}& =&- x_{3} \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S II} \\ \mathbf{B}_{12} & =&\left(\frac12 + x_{3}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{3}\right) \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{S II} \\ \mathbf{B}_{13} & =&x_{4} \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& =&x_{4} \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Sb} \\ \mathbf{B}_{14} & =&\left(\frac12 - x_{4}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 - x_{4}\right) \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Sb} \\ \mathbf{B}_{15} & =&- x_{4} \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& =&- x_{4} \, a \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Sb} \\ \mathbf{B}_{16} & =&\left(\frac12 + x_{4}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& =&\left(\frac12 + x_{4}\right) \, a \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4c\right) & \mbox{Sb} \\ \end{array} \]

References

  • A. Kyono and M. Kimata, Crystal structures of chalcostibite (CuSbS2) and emplectite (CuBiS2): Structural relationship of stereochemical activity between chalcostibite and emplectite, Am. Mineral. 90, 162–165 (2005).

Geometry files


Prototype Generator

aflow --proto=AB2C_oP16_62_c_2c_c --params=

Species:

Running:

Output: