
Prototype | : | BaHg11 |
AFLOW prototype label | : | AB11_cP36_221_c_agij |
Strukturbericht designation | : | $D2_{e}$ |
Pearson symbol | : | cP36 |
Space group number | : | 221 |
Space group symbol | : | $\mbox{Pm}\bar{3}\mbox{m}$ |
AFLOW prototype command | : | aflow --proto=AB11_cP36_221_c_agij --params=$a,x_{3},y_{4},y_{5}$ |
A number of Hg and Cd phases with Group I or IIA metals or rare earths.(Pearson, 1972) pp. 751–752.
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = &0 \mathbf{\hat{x}} + 0 \mathbf{\hat{y}} + 0 \mathbf{\hat{z}} & \left(1a\right) & \mbox{Hg I} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(3c\right) & \mbox{Ba} \\ \mathbf{B}_{3} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(3c\right) & \mbox{Ba} \\ \mathbf{B}_{4} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}& \left(3c\right) & \mbox{Ba} \\ \mathbf{B}_{5} & = &x_{3} \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}+ x_{3} \, \mathbf{a}_{3}& = &x_{3} \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}+ x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{6} & = &- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+ x_{3} \, \mathbf{a}_{3}& = &- x_{3} \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}+ x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{7} & = &- x_{3} \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}& = &- x_{3} \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}- x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{8} & = &x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}& = &x_{3} \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}- x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{9} & = &x_{3} \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}& = &x_{3} \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}- x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{10} & = &- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}& = &- x_{3} \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}- x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{11} & = &x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+ x_{3} \, \mathbf{a}_{3}& = &x_{3} \, a \, \mathbf{\hat{x}}- x_{3} \, a \, \mathbf{\hat{y}}+ x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{12} & = &- x_{3} \, \mathbf{a}_{1}+ x_{3} \, \mathbf{a}_{2}+ x_{3} \, \mathbf{a}_{3}& = &- x_{3} \, a \, \mathbf{\hat{x}}+ x_{3} \, a \, \mathbf{\hat{y}}+ x_{3} \, a \, \mathbf{\hat{z}}& \left(8g\right) & \mbox{Hg II} \\ \mathbf{B}_{13} & = &y_{4} \, \mathbf{a}_{2}+ y_{4} \, \mathbf{a}_{3}& = &y_{4} \, a \, \mathbf{\hat{y}}+ y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{14} & = &y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}& = &y_{4} \, a \, \mathbf{\hat{y}}- y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{15} & = &- y_{4} \, \mathbf{a}_{2}+ y_{4} \, \mathbf{a}_{3}& = &- y_{4} \, a \, \mathbf{\hat{y}}+ y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{16} & = &- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}& = &- y_{4} \, a \, \mathbf{\hat{y}}- y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{17} & = &y_{4} \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{3}& = &y_{4} \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{18} & = &y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}& = &y_{4} \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{19} & = &- y_{4} \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{3}& = &- y_{4} \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{20} & = &- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}& = &- y_{4} \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{z}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{21} & = &y_{4} \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{2}& = &y_{4} \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{y}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{22} & = &y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}& = &y_{4} \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{y}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{23} & = &- y_{4} \, \mathbf{a}_{1}+ y_{4} \, \mathbf{a}_{2}& = &- y_{4} \, a \, \mathbf{\hat{x}}+ y_{4} \, a \, \mathbf{\hat{y}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{24} & = &- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}& = &- y_{4} \, a \, \mathbf{\hat{x}}- y_{4} \, a \, \mathbf{\hat{y}}& \left(12i\right) & \mbox{Hg III} \\ \mathbf{B}_{25} & = &\frac12 \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}+ y_{5} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}+ y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{26} & = &\frac12 \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}- y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{27} & = &\frac12 \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+ y_{5} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}+ y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{28} & = &\frac12 \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}- y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{29} & = &y_{5} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ y_{5} \, \mathbf{a}_{3}& = &y_{5} \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{30} & = &y_{5} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}& = &y_{5} \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}- y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{31} & = &- y_{5} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ y_{5} \, \mathbf{a}_{3}& = &- y_{5} \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{32} & = &- y_{5} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}& = &- y_{5} \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}- y_{5} \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{33} & = &y_{5} \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &y_{5} \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{34} & = &y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &y_{5} \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{35} & = &- y_{5} \, \mathbf{a}_{1}+ y_{5} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &- y_{5} \, a \, \mathbf{\hat{x}}+ y_{5} \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \mathbf{B}_{36} & = &- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &- y_{5} \, a \, \mathbf{\hat{x}}- y_{5} \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(12j\right) & \mbox{Hg IV} \\ \end{array} \]