Ir3Ge7 ($D8_{f}$) Structure: A7B3_cI40_229_df_e

Picture of Structure; Click for Big Picture
Prototype : Ir3Ge7
AFLOW prototype label : A7B3_cI40_229_df_e
Strukturbericht designation : $D8_{f}$
Pearson symbol : cI40
Space group number : 229
Space group symbol : $Im\bar{3}m$
AFLOW prototype command : aflow --proto=A7B3_cI40_229_df_e
--params=
$a,x_{2},x_{3}$


Other compounds with this structure

  • Ga7Ni3, In7Pd3, Sb7Mo3, As7Re3, Sn7Ru3

Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{5} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{6} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12d\right) & \mbox{Ge I} \\ \mathbf{B}_{7} & = & x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{8} & = & -x_{2} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{9} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{y}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{10} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{y}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{11} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{z}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{12} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{z}} & \left(12e\right) & \mbox{Ir} \\ \mathbf{B}_{13} & = & 2x_{3} \, \mathbf{a}_{1} + 2x_{3} \, \mathbf{a}_{2} + 2x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{14} & = & -2x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{15} & = & -2x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{16} & = & -2x_{3} \, \mathbf{a}_{1} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{17} & = & 2x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{18} & = & -2x_{3} \, \mathbf{a}_{1}-2x_{3} \, \mathbf{a}_{2}-2x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{19} & = & 2x_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \mathbf{B}_{20} & = & 2x_{3} \, \mathbf{a}_{1} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Ge II} \\ \end{array} \]

References

Found in

  • F. Selim, J. P. Bevington, and G. S. Collins, Diffusion of 111Cd probes in Ga7Pt3 studied via nuclear quadrupole relaxation, Hyperfine Interact. 178, 87–90 (2007), doi:10.1007/s10751-008-9663-3.

Geometry files


Prototype Generator

aflow --proto=A7B3_cI40_229_df_e --params=

Species:

Running:

Output: