
Prototype | : | TlP5 |
AFLOW prototype label | : | A5B_oP24_26_3a3b2c_ab |
Strukturbericht designation | : | None |
Pearson symbol | : | oP24 |
Space group number | : | 26 |
Space group symbol | : | $Pmc2_{1}$ |
AFLOW prototype command | : | aflow --proto=A5B_oP24_26_3a3b2c_ab --params=$a,b/a,c/a,y_{1},z_{1},y_{2},z_{2},y_{3},z_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6},y_{7},z_{7},y_{8},z_{8},x_{9}, \\y_{9},z_{9},x_{10},y_{10},z_{10}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P I} \\ \mathbf{B}_{2} & = & -y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P I} \\ \mathbf{B}_{3} & = & y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P II} \\ \mathbf{B}_{4} & = & -y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P II} \\ \mathbf{B}_{5} & = & y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P III} \\ \mathbf{B}_{6} & = & -y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P III} \\ \mathbf{B}_{7} & = & y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Tl I} \\ \mathbf{B}_{8} & = & -y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Tl I} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P IV} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P IV} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P V} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P V} \\ \mathbf{B}_{13} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P VI} \\ \mathbf{B}_{14} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{P VI} \\ \mathbf{B}_{15} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Tl II} \\ \mathbf{B}_{16} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Tl II} \\ \mathbf{B}_{17} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VII} \\ \mathbf{B}_{18} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VII} \\ \mathbf{B}_{19} & = & x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VII} \\ \mathbf{B}_{20} & = & -x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VII} \\ \mathbf{B}_{21} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VIII} \\ \mathbf{B}_{22} & = & -x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VIII} \\ \mathbf{B}_{23} & = & x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VIII} \\ \mathbf{B}_{24} & = & -x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{P VIII} \\ \end{array} \]