ThB4 ($D1_{e}$) Structure: A4B_tP20_127_ehj_g

Picture of Structure; Click for Big Picture
Prototype : ThB4
AFLOW prototype label : A4B_tP20_127_ehj_g
Strukturbericht designation : $D1_{e}$
Pearson symbol : tP20
Space group number : 127
Space group symbol : $P4/mbm$
AFLOW prototype command : aflow --proto=A4B_tP20_127_ehj_g
--params=
$a,c/a,z_{1},x_{2},x_{3},x_{4},y_{4}$


Other compounds with this structure

  • B4Ce, B4U, B4Y

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B I} \\ \mathbf{B}_{3} & = & -z_{1} \, \mathbf{a}_{3} & = & -z_{1}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Th} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Th} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Th} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Th} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{B II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{B II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{B II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{B II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{15} & = & -y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{16} & = & y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{B III} \\ \end{array} \]

References

  • A. Zalkin and D. H. Templeton, The Crystal Structures of CeB4, ThB4, and UB4, J. Chem. Phys. 18, 391 (1950), doi:10.1063/1.1747637.

Geometry files


Prototype Generator

aflow --proto=A4B_tP20_127_ehj_g --params=

Species:

Running:

Output: