
Prototype | : | IrGe4 |
AFLOW prototype label | : | A4B_hP15_144_4a_a |
Strukturbericht designation | : | None |
Pearson symbol | : | hP15 |
Space group number | : | 144 |
Space group symbol | : | $P3_{1}$ |
AFLOW prototype command | : | aflow --proto=A4B_hP15_144_4a_a --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{1}+y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{1}+y_{1}\right)a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge I} \\ \mathbf{B}_{2} & = & -y_{1} \, \mathbf{a}_{1} + \left(x_{1}-y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{1}-y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge I} \\ \mathbf{B}_{3} & = & \left(-x_{1}+y_{1}\right) \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(-x_{1}+\frac{1}{2}y_{1}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{1}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge I} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{2}+y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{2}+y_{2}\right)a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge II} \\ \mathbf{B}_{5} & = & -y_{2} \, \mathbf{a}_{1} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{2}-y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge II} \\ \mathbf{B}_{6} & = & \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(-x_{2}+\frac{1}{2}y_{2}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{2}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge II} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge III} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge III} \\ \mathbf{B}_{9} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge III} \\ \mathbf{B}_{10} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge IV} \\ \mathbf{B}_{11} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge IV} \\ \mathbf{B}_{12} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ge IV} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ir} \\ \mathbf{B}_{14} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ir} \\ \mathbf{B}_{15} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(3a\right) & \mbox{Ir} \\ \end{array} \]