Simpsonite (Ta3Al4O13[OH]) Structure: A4B14C3_hP21_143_bd_ac4d_d

Picture of Structure; Click for Big Picture
Prototype : Ta3Al4O13[OH]
AFLOW prototype label : A4B14C3_hP21_143_bd_ac4d_d
Strukturbericht designation : None
Pearson symbol : hP21
Space group number : 143
Space group symbol : $P3$
AFLOW prototype command : aflow --proto=A4B14C3_hP21_143_bd_ac4d_d
--params=
$a,c/a,z_{1},z_{2},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9}, \\y_{9},z_{9}$


  • The OH molecule is centered on the (1c) site; however, it is only listed as O in this prototype.

Trigonal Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(1b\right) & \mbox{Al I} \\ \mathbf{B}_{3} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(1c\right) & \mbox{O II} \\ \mathbf{B}_{4} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Al II} \\ \mathbf{B}_{5} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Al II} \\ \mathbf{B}_{6} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Al II} \\ \mathbf{B}_{7} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O III} \\ \mathbf{B}_{8} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O III} \\ \mathbf{B}_{9} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O III} \\ \mathbf{B}_{10} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O IV} \\ \mathbf{B}_{11} & = & -y_{6} \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O IV} \\ \mathbf{B}_{12} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O IV} \\ \mathbf{B}_{13} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{7}+y_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O V} \\ \mathbf{B}_{14} & = & -y_{7} \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{7}-y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O V} \\ \mathbf{B}_{15} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}+\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O V} \\ \mathbf{B}_{16} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{8}+y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{8}+y_{8}\right)a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O VI} \\ \mathbf{B}_{17} & = & -y_{8} \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{8}-y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O VI} \\ \mathbf{B}_{18} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}+\frac{1}{2}y_{8}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{O VI} \\ \mathbf{B}_{19} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{9}+y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{9}+y_{9}\right)a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Ta} \\ \mathbf{B}_{20} & = & -y_{9} \, \mathbf{a}_{1} + \left(x_{9}-y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{9}-y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Ta} \\ \mathbf{B}_{21} & = & \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}+\frac{1}{2}y_{9}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(3d\right) & \mbox{Ta} \\ \end{array} \]

References

  • T. S. Ercit, F. C. Hawthorne, and P. Cerny, The crystal structure of alumotantite; its relation to the structures of simpsonite and the (Al, Ga)(Ta, Nb) O4 compounds, Can. Mineral. 30, 653–662 (1992).

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A4B14C3_hP21_143_bd_ac4d_d --params=

Species:

Running:

Output: