CrCl3 Structure: A3B_hP24_153_3c_2b

Picture of Structure; Click for Big Picture
Prototype : CrCl3
AFLOW prototype label : A3B_hP24_153_3c_2b
Strukturbericht designation : None
Pearson symbol : hP24
Space group number : 153
Space group symbol : $P3_{2}12$
AFLOW prototype command : aflow --proto=A3B_hP24_153_3c_2b
--params=
$a,c/a,x_{1},x_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$



Trigonal Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{6} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{1}a \, \mathbf{\hat{y}} + \frac{1}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr I} \\ \mathbf{B}_{2} & = & x_{1} \, \mathbf{a}_{1} + 2x_{1} \, \mathbf{a}_{2} + \frac{5}{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{1}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \frac{5}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr I} \\ \mathbf{B}_{3} & = & -2x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{1}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr I} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \frac{1}{6} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{2}a \, \mathbf{\hat{y}} + \frac{1}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr II} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + 2x_{2} \, \mathbf{a}_{2} + \frac{5}{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{2}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \frac{5}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr II} \\ \mathbf{B}_{6} & = & -2x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{2}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Cr II} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{9} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{10} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{3} - z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{3} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{11} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{2}{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl I} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{14} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{15} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{16} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{3} - z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{3} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{17} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{2}{3} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & x_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl II} \\ \mathbf{B}_{19} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \mathbf{B}_{20} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \mathbf{B}_{21} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \mathbf{B}_{22} & = & -y_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{3} - z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{3} - z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \mathbf{B}_{23} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{2}{3} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} - z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \mathbf{B}_{24} & = & x_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cl III} \\ \end{array} \]

References

  • N. Wooster, The Structure of Chromium Trichloride CrCl3, Zeitschrift für Kristallographie – Crystalline Materials 74, 363–374 (1930), doi:10.1524/zkri.1930.74.1.363.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A3B_hP24_153_3c_2b --params=

Species:

Running:

Output: