Fe3Th7 ($D10_{2}$) Structure: A3B7_hP20_186_c_b2c

Picture of Structure; Click for Big Picture
Prototype : Fe3Th7
AFLOW prototype label : A3B7_hP20_186_c_b2c
Strukturbericht designation : $D10_{2}$
Pearson symbol : hP20
Space group number : 186
Space group symbol : $P6_{3}mc$
AFLOW prototype command : aflow --proto=A3B7_hP20_186_c_b2c
--params=
$a,c/a,z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4}$


Other compounds with this structure

  • B3Re7, B3Ru7, B3Tc7, C3Fe7, Ce3Ni7, Co3Th7, Fe3Th7, Ir3Th7, Ni3Th7, Os3Th7, Pt3Th7, Rh3Th7, Ru3Th7

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Th I} \\ \mathbf{B}_{2} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Th I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1} + 2x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{2}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = & -2x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{2}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \sqrt{3}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1}-2x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{2}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{8} & = & 2x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{2}x_{2}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Fe} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{10} & = & x_{3} \, \mathbf{a}_{1} + 2x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{11} & = & -2x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{12} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \sqrt{3}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1}-2x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{14} & = & 2x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{3}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th II} \\ \mathbf{B}_{15} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + 2x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \mathbf{B}_{17} & = & -2x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \sqrt{3}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \mathbf{B}_{19} & = & -x_{4} \, \mathbf{a}_{1}-2x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \mathbf{B}_{20} & = & 2x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Th III} \\ \end{array} \]

References

  • J. V. Florio, N. C. Baenziger, and R. E. Rundle, Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel, Acta Cryst. 9, 367–372 (1956), doi:10.1107/S0365110X5600108X.

Found in

  • ICSD, Inorganic Crystal Structure Database. ID 401657.

Geometry files


Prototype Generator

aflow --proto=A3B7_hP20_186_c_b2c --params=

Species:

Running:

Output: