
Prototype | : | Fe3Zn10 |
AFLOW prototype label | : | A3B10_cI52_229_e_fh |
Strukturbericht designation | : | $D8_{1}$ |
Pearson symbol | : | cI52 |
Space group number | : | 229 |
Space group symbol | : | $Im\bar{3}m$ |
AFLOW prototype command | : | aflow --proto=A3B10_cI52_229_e_fh --params=$a,x_{1},x_{2},y_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{y}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{y}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{z}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{6} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} & = & -x_{1}a \, \mathbf{\hat{z}} & \left(12e\right) & \mbox{Fe} \\ \mathbf{B}_{7} & = & 2x_{2} \, \mathbf{a}_{1} + 2x_{2} \, \mathbf{a}_{2} + 2x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{8} & = & -2x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{9} & = & -2x_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{10} & = & -2x_{2} \, \mathbf{a}_{1} & = & x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{11} & = & 2x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{12} & = & -2x_{2} \, \mathbf{a}_{1}-2x_{2} \, \mathbf{a}_{2}-2x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{13} & = & 2x_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{14} & = & 2x_{2} \, \mathbf{a}_{1} & = & -x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{Zn I} \\ \mathbf{B}_{15} & = & 2y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{16} & = & y_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{17} & = & -y_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{18} & = & -2y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{19} & = & y_{3} \, \mathbf{a}_{1} + 2y_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{20} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{21} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{22} & = & -y_{3} \, \mathbf{a}_{1}-2y_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{23} & = & y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + 2y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{24} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} & = & -y_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{25} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} & = & y_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} & \left(24h\right) & \mbox{Zn II} \\ \mathbf{B}_{26} & = & -y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-2y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} & \left(24h\right) & \mbox{Zn II} \\ \end{array} \]