
Prototype | : | H2S |
AFLOW prototype label | : | A2B_oC24_64_2f_f |
Strukturbericht designation | : | None |
Pearson symbol | : | oC24 |
Space group number | : | 64 |
Space group symbol | : | $Cmca$ |
AFLOW prototype command | : | aflow --proto=A2B_oC24_64_2f_f --params=$a,b/a,c/a,y_{1},z_{1},y_{2},z_{2},y_{3},z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H I} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{1}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H I} \\ \mathbf{B}_{4} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H I} \\ \mathbf{B}_{5} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H II} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H II} \\ \mathbf{B}_{8} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H II} \\ \mathbf{B}_{9} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \end{array} \]