
Prototype | : | ZrO2 |
AFLOW prototype label | : | A2B_mP12_14_2e_e |
Strukturbericht designation | : | $C43$ |
Pearson symbol | : | mP12 |
Space group number | : | 14 |
Space group symbol | : | $\mbox{P2}_{1}\mbox{/c}$ |
AFLOW prototype command | : | aflow --proto=A2B_mP12_14_2e_e --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &x_{1} \, \mathbf{a}_{1}+ y_{1} \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& = &\left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{1} \, b \, \mathbf{\hat{y}}+ z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{2} & = &- x_{1} \, \mathbf{a}_{1}+ \left(\frac12 + y_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 - z_{1}\right) \, c \, \cos\beta - x_{1} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 + y_{1}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{3} & = &- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& = &- \left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{1} \, b \, \mathbf{\hat{y}}- z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{4} & = &x_{1} \, \mathbf{a}_{1}+ \left(\frac12 - y_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 + z_{1}\right) \, c \, \cos\beta + x_{1} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 - y_{1}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{5} & = &x_{2} \, \mathbf{a}_{1}+ y_{2} \, \mathbf{a}_{2}+ z_{2} \, \mathbf{a}_{3}& = &\left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{2} \, b \, \mathbf{\hat{y}}+ z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{6} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + y_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{2}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 - z_{2}\right) \, c \, \cos\beta - x_{2} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 + y_{2}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{2}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{7} & = &- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}& = &- \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{2} \, b \, \mathbf{\hat{y}}- z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{8} & = &x_{2} \, \mathbf{a}_{1}+ \left(\frac12 - y_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{2}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 + z_{2}\right) \, c \, \cos\beta + x_{2} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 - y_{2}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{2}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{9} & = &x_{3} \, \mathbf{a}_{1}+ y_{3} \, \mathbf{a}_{2}+ z_{3} \, \mathbf{a}_{3}& = &\left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{3} \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{Zr} \\ \mathbf{B}_{10} & = &- x_{3} \, \mathbf{a}_{1}+ \left(\frac12 + y_{3}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 - z_{3}\right) \, c \, \cos\beta - x_{3} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 + y_{3}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 - z_{3}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{Zr} \\ \mathbf{B}_{11} & = &- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}& = &- \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{3} \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{Zr} \\ \mathbf{B}_{12} & = &x_{3} \, \mathbf{a}_{1}+ \left(\frac12 - y_{3}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& = &\left(\left(\frac12 + z_{3}\right) \, c \, \cos\beta + x_{3} \, a\right) \, \mathbf{\hat{x}}+ \left(\frac12 - y_{3}\right) \, b \, \mathbf{\hat{y}}+ \left(\frac12 + z_{3}\right) \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4e\right) & \mbox{Zr} \\ \end{array} \]