
Prototype | : | H2S |
AFLOW prototype label | : | A2B_aP6_2_aei_i |
Strukturbericht designation | : | None |
Pearson symbol | : | aP6 |
Space group number | : | 2 |
Space group symbol | : | $P\bar{1}$ |
AFLOW prototype command | : | aflow --proto=A2B_aP6_2_aei_i --params=$a,b/a,c/a,\alpha,\beta,\gamma,x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}\left(a+b\cos\gamma\right) \, \mathbf{\hat{x}} + \frac{1}{2}b\sin\gamma \, \mathbf{\hat{y}} & \left(1e\right) & \mbox{H II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+y_{3}b\cos\gamma+z_{3}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{3}b\sin\gamma+z_{3}c_{y}\right) \, \mathbf{\hat{y}} + z_{3}c_{z} \, \mathbf{\hat{z}} & \left(2i\right) & \mbox{H III} \\ \mathbf{B}_{4} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-y_{3}b\cos\gamma-z_{3}c_{x}\right) \, \mathbf{\hat{x}} + \left(-y_{3}b\sin\gamma-z_{3}c_{y}\right) \, \mathbf{\hat{y}}-z_{3}c_{z} \, \mathbf{\hat{z}} & \left(2i\right) & \mbox{H III} \\ \mathbf{B}_{5} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+y_{4}b\cos\gamma+z_{4}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{4}b\sin\gamma+z_{4}c_{y}\right) \, \mathbf{\hat{y}} + z_{4}c_{z} \, \mathbf{\hat{z}} & \left(2i\right) & \mbox{S} \\ \mathbf{B}_{6} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-y_{4}b\cos\gamma-z_{4}c_{x}\right) \, \mathbf{\hat{x}} + \left(-y_{4}b\sin\gamma-z_{4}c_{y}\right) \, \mathbf{\hat{y}}-z_{4}c_{z} \, \mathbf{\hat{z}} & \left(2i\right) & \mbox{S} \\ \end{array} \]