
Prototype | : | TlZn2Sb2 |
AFLOW prototype label | : | A2BC2_tI20_79_c_2a_c |
Strukturbericht designation | : | None |
Pearson symbol | : | tI20 |
Space group number | : | 79 |
Space group symbol | : | $I4$ |
AFLOW prototype command | : | aflow --proto=A2BC2_tI20_79_c_2a_c --params=$a,c/a,z_{1},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Tl I} \\ \mathbf{B}_{2} & = & z_{2} \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2} & = & z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Tl II} \\ \mathbf{B}_{3} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{4} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{5} & = & \left(x_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{6} & = & \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{7} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Zn} \\ \mathbf{B}_{8} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Zn} \\ \mathbf{B}_{9} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Zn} \\ \mathbf{B}_{10} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Zn} \\ \end{array} \]