
Prototype | : | MnGa2Sb2 |
AFLOW prototype label | : | A2BC2_oI20_45_c_b_c |
Strukturbericht designation | : | None |
Pearson symbol | : | oI20 |
Space group number | : | 45 |
Space group symbol | : | $Iba2$ |
AFLOW prototype command | : | aflow --proto=A2BC2_oI20_45_c_b_c --params=$a,b/a,c/a,z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Mn} \\ \mathbf{B}_{2} & = & z_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{1}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Mn} \\ \mathbf{B}_{3} & = & \left(y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Ga} \\ \mathbf{B}_{4} & = & \left(-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Ga} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2} + z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Ga} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +y_{2} + z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2} + z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Ga} \\ \mathbf{B}_{7} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{8} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Sb} \\ \end{array} \]