$\alpha$–RbPr[MoO4]2 Structure: A2B8CD_oP24_48_k_2m_d_b

Picture of Structure; Click for Big Picture
Prototype : $\alpha$–RbPr[MoO4]2
AFLOW prototype label : A2B8CD_oP24_48_k_2m_d_b
Strukturbericht designation : None
Pearson symbol : oP24
Space group number : 48
Space group symbol : $Pnnn$
AFLOW prototype command : aflow --proto=A2B8CD_oP24_48_k_2m_d_b
--params=
$a,b/a,c/a,z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$


Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Rb} \\ \mathbf{B}_{2} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Rb} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Pr} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Pr} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4k\right) & \mbox{Mo} \\ \mathbf{B}_{6} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(4k\right) & \mbox{Mo} \\ \mathbf{B}_{7} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4k\right) & \mbox{Mo} \\ \mathbf{B}_{8} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4k\right) & \mbox{Mo} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{13} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{5}\right)b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{5}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{5}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{O II} \\ \end{array} \]

References

  • R. F. Klevtsova and P. V. Klevtsov, Polymorphism of rubidium–praseodymium molybdate, RbPr(MoO4)2, Kristallografiya 15, 466–470 (1970).

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A2B8CD_oP24_48_k_2m_d_b --params=

Species:

Running:

Output: