Fresnoite (Ba2TiSi2O8) Structure: A2B8C2D_tP26_100_c_abcd_c_a

Picture of Structure; Click for Big Picture
Prototype : Ba2TiSi2O8
AFLOW prototype label : A2B8C2D_tP26_100_c_abcd_c_a
Strukturbericht designation : None
Pearson symbol : tP26
Space group number : 100
Space group symbol : $P4bm$
AFLOW prototype command : aflow --proto=A2B8C2D_tP26_100_c_abcd_c_a
--params=
$a,c/a,z_{1},z_{2},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},y_{7},z_{7}$



Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & z_{2} \, \mathbf{a}_{3} & = & z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ti} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ti} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{3}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{O II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{O II} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ba} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ba} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ba} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ba} \\ \mathbf{B}_{11} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O III} \\ \mathbf{B}_{12} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Si} \\ \mathbf{B}_{16} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Si} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{6}\right)a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Si} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Si} \\ \mathbf{B}_{19} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{20} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{21} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{22} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O IV} \\ \end{array} \]

References

  • S. A. Markgraf, A. Halliya, A. S. Bhalla, R. E. Newnham, and C. T. Prewitt, X–ray structure refinement and pyroelectric investigation of fresnoite, Ba2TiSi2O8, Ferroelectrics 62, 17–26 (1985), doi:10.1080/00150198508017914.

Geometry files


Prototype Generator

aflow --proto=A2B8C2D_tP26_100_c_abcd_c_a --params=

Species:

Running:

Output: